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SUMMARY 

The problem of computing the vibration modes of a structure vibrating in a fluid is examined with specific 
application to ship hulls. In particular, methods which take proper account of the three-dimensional 
nature of the water movements are described. Fluid singularities involving either a line doublet on the in- 
tersection of the water surface with the plane of symmetry or distributed sources on retracted boundaries are 
particularly effective at modelling the fluid flow and appear to give better numerical efficiencies than finite 
element or boundary element methods. The effects of the extra coefficients in the mass matrix arising from 
added mass on the various methods of eigensolution are discussed. 

INTRODUCTION 

From the early 1960s the capacity of digital computers has enabled engineers to carry out stress 
analyses of complicated structures subject to static loadings. The method now generally adopted 
is the finite element method because of the ease with which it can cope with problems whatever 
are their geometrical forms and also the way more accurate results may be obtained when required 
by using a finer mesh in the idealization. Although many thousands of variables may be used 
for the analysis of large structures such as aircraft, ships, bridges etc., the solution of the stiffness 
equations is not too cumbersome because advantage may be taken of sparsity. 

The eigenvalue problem most often encountered with such complicated structures is that of 
finding their lower frequencies of vibration. In this case the accelerations of the structure at any 
particular time yield inertia forces which can be deemed to balance the structural forces giving 
equations of the form 

Mj+Kx=O,  (1) 
where M and K are n x n symmetric mass and stiffness matrices and x and j are vectors of 
displacements and accelerations, respectively. Making use of the known sinusoidal nature of the 
vibration it is possible to substitute 

x = x sin(cc)t + E ) ,  (2) 
where Q is the frequency of vibration. Equation (1) then yields the linear generalized eigenvalue 
form 

MX = CO~KX. ( 3 )  
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Where the mass entirely derives from the self-weight of the structure or from material directly 
attached to the structure which moves with it, the mass matrix will have the same sparsity structure 
as K. The techniques which are most widely used for solving these types of equation are simul- 
taneous and subspace iteration,' - 3  the Lanczos meth0d~9~ and Sturm sequence  method^.^*^,^ 
These all involve factorization of the stiffness matrix or matrices of the form K - pM and hence the 
amount of fill-in during factorization of K or K-pM is an important parameter in their efficiency. 
Such analyses have generally been applied to aircraft, bridges and other types of structure by 
neglecting the mass of the surrounding air. However for structures surrounded or partially 
surrounded by water such as ships, submarines and dams, motion of the water in the 
neighbourhood of the structure must be taken into account in the analysis. It is this aspect, with 
particular reference to ship hulls, that is the consideration of this paper. 

EARLY TREATMENT OF FLUID INTERACTION 

Although Lamb8 investigated the accelerated motion of a submerged cylinder, the added mass 
effect for ship vibration was only properly recognized from the experimental work of Nichollsg 
in 1924 and the mathematical analysis using conformal transformations of Lewis" in 1929. The 
method of analysis for ship vibration which developed from this work was based on the strip 
theory assumption that the water motion in the region of a particular cross-section of the ship 
corresponds to that of an infinitely long ship of the same cross-section going through the same 
motion. Assuming that the water is incompressible, for a vertical vibration of the ship there will 
be water movement between the hull and the free surface on the downbeat (Figure l(a)) and 
back again on the upbeat. The added mass effect comes from the pressures transmitted to the 
hull arising from the inertia of the water. By including a reflected image of the hull in the free 
surface (Figure l(b)) it is possible to solve instead the problem of a vibrating body completely 
submerged in fluid. A simple case occurs where the hull below the waterline is semicircular, in 
which case the added mass is exactly equal to the weight of the water displaced by the hull. 
Since the total weight of the ship must equal the total weight ofthe displaced water, the added mass 
is likely to be of the same order of magnitude as the actual mass of the ship and is therefore of 
considerable importance. 

However it was found necessary to include correction factors to take account of the fact that 
the water motion is really three-dimensional. For instance in the heave mode there will be some 

free surface 
\ 

(a) Actual (b )  Idealised 

Figure I .  Water movement in ship hull vibration according to strip theory 
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Figure 2. Longitudinal water movement in the plane of symmetry for the heave mode of a ship hull 

modal displacement profile 
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Figure 3. Longitudinal water movement in the plane of symmetry for the second bending mode of a ship hull 

longitudinal water movement as illustrated in Figure 2. For ships of narrow beam this gives a 
slight reduction in the added mass effect and a larger reduction for ships of broad beam. Lewis 
corrected strip theory added mass by means of a factor evaluated from the motion of water 
around an ellipsoid of revolution having the same length and breadth as the ship. However, 
since higher order vibration modes exhibit nodes along the length of the hull, longitudinal water 
movements are facilitated by the shorter flow paths involved (Figure 3).  Hence corrections required 
to the strip theory results are larger for increasing mode number. From experimental investigations 
of several authors, Townsin' proposed the simple correction factor 

J,= 1.02-- 1.2-- ~ 

3B(  L :) 
where B and L are the beam and length of the ship, respectively, and n is the mode number. 

Such methods can be criticized because they avoid modelling the three-dimensional movement 
of water around the actual hull of the ship and therefore have in-built errors which cannot be 
reduced by refinement. Also, because the correction factors are frequency dependent, the com- 
putational of each vibration frequency of the ship hull needs to be carried out individually. Thus, 
not only are transformation methods ruled out, but also the powerful vector iterative methods of 
simultaneous iteration, subspace iteration and Lanczos iteration. Furthermore the change of mass 
from mode to mode destroys the orthogonality condition between the different modes of vibration. 

THREE-DIMENSIONAL FLUID EQUATIONS 

If the velocity of an inviscid fluid at the point ( x , y , z )  has the components u, u and w in the 
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, 

1 + - a v  ( av av av) 
PdY at ax ay az 

- -______  + u - + v - + w - ,  

J 

---=- 
dz at 

(4) 

where p is density, t is time, g is the gravitational constant and p is the pressure due to motion (i.e. 
not including the static pressure). Furthermore, assuming that the fluid is incompressible 

(5) 
au av aw 
ax ay aZ - + -+ - = 0. 

If the vibration motion is small the convective accelerations (the bracketed terms in the Eulerian 
equations) can be neglected. Hence equations (4) and (5) yield the Laplace equation 

The boundary condition at the surface of the hull is 

where n is the direction normal to the surface and V, and a, are the normal velocity and 
acceleration, respectively. 

FINITE ELEMENT IDEALIZATION FOR A COMPLETE SYSTEM 

One way of analysing such a system is to develop a finite element discretization which involves fluid 
as well as structural elements.12 For instance Armand and Orsero13 use such an idealization to 
analyse the vibration characteristics of a simplified barge structure. By using two planes of 
symmetry, only one quarter of the barge was analysed. The structure was modelled using 660 finite 
elements involving 1340 displacement variables at  476 nodes. The fluid domain was modelled using 
200 twenty-node three-dimensional elements involving over 900 fluid nodes (Figure 4). The extent 
of the water domain was 150m longitudinally, 60m transversely and 80m vertically compared 
with 90 m, 20 m and 15 m for the corresponding dimensions of the quarter barge. The free surface 
and fluid external boundary conditions were p = 0 and, on the plane of symmetry, dppn = 0. 

The discretization of Laplace's equation for the fluid yields equations of the form 

K,p(t) = - pLU(t), (8) 
where p(t) is a vector of dynamic pressures at the fluid nodes, u(t) is a vector of accelerations at the 
hull-fluid boundary and p is the density of the fluid. The corresponding added mass matrix 
describing the pressure forces at the hull-fluid boundary is given by 

MA = pLTK; 'L. (9) 

(10) 

The resulting equations of undamped, unforced vibration of the system are specified as 

(Ms + MA)u(t) + K,u(t) = 0, 
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structure 

Figure 4. Armand and Orsero finite element idealization 

where Ms and K, are the structural mass and stiffness matrices, respectively. 
Analysis of ships by this method would normally require more variables because of lack of fore 

and aft symmetry and also the specification of fluid elements would be complicated by the non- 
uniformity of the ship cross-section. A further problem with adopting this method is that it is 
necessary to know how far to extend the fluid domain in order to ensure that the external fluid 
boundary constraints are negligible, although this problem may be partially alleviated by the use of 
infinite  element^.'^^ 

USE OF FLUID SINGULARITIES IN  AXISYMMETRIC PROBLEMS 

Alternative methods of representing the motion of the fluid which may be used for three- 
dimensional analyses involve the use of fluid singularities either inside or at the surface of the 
structure. 

One of the simplest possible methods applicable to vertical vibration of ships is to assume that 
the hull has the geometry of a cylinder of varying diameter with its axis in the plane of the surface. 
Steady flow round the cylinder can then be idealized by means of a distribution of doublets with 
their axes vertical and lying along the axis of the cylinder as shown in Figure 5. A doublet of 
strength fl acting at point Q gives rise to a potential at point P (Figure 6)  of 

where f is the distance PQ and @is the angle between PQ and the axis of the doublet. With r as the 
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Figure 5. A simple idealization for hull vibration 

local radius at P and 8 the corresponding angle to the vertical 

Hence 
pcos $= r cos 8. 

r cos 0 
4 = 4 4 y  + ( z  - 4 y  4 

where z and z* are the longitudinal co-ordinates of P and Q, respectively. The local fluid velocity 
normal to the surface is given by 

and the normal acceleration at P due to the complete doublet distribution is given by integration 

Figure 6. Normal velocity due to doublet increment 
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using 

giving 
fi = pd2, 

[ ( z  - i?)2 - 2r2]cos 8 
512 Pd2' 4n[r2 + ( z - f 2 ]  

However, if the cross-section containing P has a vertical acceleration of x, the normal acceleration 
at P is given by x cos 8. Hence 

For numerical modelling, the hull is divided into n segments with the acceleration of the centre 
cross-section of each segment being matched with the acceleration of the structure. In order to do 
this with n variables describing the longitudinal strength distribution of the doublets and x as a 
vector of n segment accelerations, 

x = Cfi. (18) 
If p describes a set of discrete doublets, each coefficient of C is obtained directly from 
equation (17) by removing the integral sign and substituting the appropriate values of r,  z and 
2. In other cases, such as for the stepped doublet distribution shown in Figure 7, an integration 
is involved for each coefficient. 

From equations (4), considering that u = a4/dx, it follows that 

p =  -p$ .  (19) 
The vertical component of force/unit length exerted on the lower semi-circle of a longitudinal 
segment of the hull is given by 

$ cos 8d8. SI:, p r  cos 8d8 = p r  

Using equations (13) and (15) and integrating the total force per unit length due to the complete 
doublet distribution 

distribution 

Figure 7. Stepped doublet distribution 
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Integration of the force for each segment in terms of each doublet variable gives the coefficients of a 
matrix Q such that 

f = Q &  (22) 
where f is the vector of segment forces. Eliminating f i  between equations (17) and (22) gives the 
added mass matrix for the fluid as 

MA = QC-’. (23) 
Comparison have been made for the case of circular cylinders with results by Kumai16 using 
energy methods and for the case of ellipsoids of revolution with results given by  hick^.'^ In both 
cases agreement is good.’8 

It is possible to use this method to model the vibration characteristics of ships which are not 
semi-circular in cross-section by replacing each ship segment with the semi-circular cross-section 
which exhibits the same two-dimensional virtual inass as the actual cross-section. 

USE OF FLUID SINGULARITIES IN MORE GENERAL 
THREE-DIMENSIONAL PROBLEMS 

In order to obtain idealizations which model the fluid accelerations more accurately it is necessary 
to replace the doublets on the central axis by a number of fluid singularities closer to or on the 
surface of the ship. Agar” has investigated the use of line singularities of the form shown in Figure 
8 for ship hull vibration. Both doublets and simple sources were investigated and simple sources 
were found to be the most appropriate. The cross-section was idealized as a series of segments 
with the centre-point of each segment being a control point at which the equation for normal 
velocity is satisfied. A source is then placed on the bisector of each segment and the free surface 
boundary condition maintained by placing a sink of equal strength in the mirror image position 
(Figure 9). Best results were obtained when the sources were positioned at a distance from the 
control point approximately equal to the length of the corresponding segment. If the sources are 
much closer to the hull surface, erroneous results will be obtained because fluid will not be 
prevented from leaking through the hull surface between the control points in the simulation. 
Alternatively if the singularities are placed much further away from the hull surface, the equations 
may become sufficiently ill-conditioned for the accuracy of the results to be affected. 

/’ 

Y 

Figure 8. Agar singularity distribution 
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Figure 9. Arrangement of cross-section with Agar sources 

McHenry’O has investigated several arrangements for singularity distributions to represent two- 
dimensional flows around bodies of arbitrary shape. One such scheme he investigated used 
uniformly distributed line sources placed on a retracted boundary as shown in Figure 10. The 
position of the retracted boundary is determined uniquely from assigned surface segment positions 
and a retraction parameter f .  Typically D lies on the bisector of angle ACE with 

When the segments are short the retracted boundary comes closer to the actual boundary and, 
furthermore, when a short segment is placed next to a long segment the amount of retraction will be 
influenced more by the short segment than the long segment. McHenry found that f 21 0.5 was 
effective and that two-dimensional flow was modelled better than if the cruder Agar singularities 
were used. He was able to show that the modelling of the surface flows was much more accurate for 
retracted boundaries than i t  was for the case where f = 0 which corresponds with more common 

control PC 

Figure 10. Arrangement of cross-section with retracted line sources having retraction parameter .f = 0.5 
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Figure 11. Sparsity structure of equations for a simple beam idealization of a ship hull using fifteen segments 

applications of the boundary element technique. One sequence of tests showed that the modelling 
of surface velocities was as good, using retracted boundaries, as when three times as many surface 
elements were employed. The use of retracted boundaries has also been advocated by Pien,' and, 
for other types of field problems, by Eskridge,22 OlivieraZ3 and Singer et 

It is therefore apparent that techniques exist for modelling the fluid motion so that the boundary 
conditions conform closely to those at the actual hull profile provided that extra variables are used 
in the fluid idealization. 

THE COMBINED EQUATIONS O F  MOTION FOR THE SIMPLEST CASE 

The simplest treatment of ship vibration using three-dimensional fluid singularities is by 
combining the axisymmetric idealization for fluid flow with a simple beam theory representation of 
the structure. Provided that the hull profile and mass distribution are both symmetric about the 
ship centre plane, the equations for vertical vibration take the form shown in Figure 11 in which the 
variables are {xi, O r ,  x 2 ,  0 2 , .  . .> where xl ,  x2,. . . are vertical displacements at the centres of each 
segment and O , ,  O , ,  . . . are the corresponding rotations, the segments being numbered consecu- 
tively. The mass matrix has a symmetric banded contribution arising from the ship structure and 
an unsymmetric contribution which couples all the displacement variables arising from the added 
mass of the fluid. 

One problem arises because of the lack of symmetry in M. Since the equations model a 
conservative system and complex eigenvalues have no physical meaning, the need to use 
unsymmetric eigensolution procedures appears to be an unnecessary embarrassment and indeed it 
has been found that replacing the added mass matrix MA by the symmetric equivalent $(MA + MI) 
makes little difference to the result.25 

EQUATIONS WITH IMPROVED FLUID MODELLING 

If the modelling technique of Agar is adopted or the method of McHenry is extended to three 
dimensional configurations each segment of the hull will be allocated several control points and 
source variables. If there are a total of m control points and source variables the following matrix 
relationships can be defined: 
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where w is the vector of local normal accelerations at the control points and p is a vector 
of integrated pressures acting on the panels. Both C and D are fully populated matrices of order 
in x m. Thus 

p = DC-'W. (24) 
The accelerations at the control points may be obtained in terms of the segment accelerations 
giving 

w = Yji, (27) 
where Y is of order m x n with only one non-zero element per row. The corresponding 
transformation giving the segment force in terms of the forces exerted on each of its component 
panels is 

f = YTp. (28) 

MA = YTDC-'Y, (29) 

Hence the added mass matrix is the product 

having the form shown in Figure 12(a). Agar discovered that the off-diagonal blocks of the C matrix 
tended to be weak, particularly away from the diagonal and could be omitted without much effect 
on the result as shown in Figure 12(b). The best solution procedure in either case is to solve 

and multiply cz = Y, 
XT = YTD, 

making use in both cases of sparsity in Y, then 

MA = XTZ. 

-1 
xxxxxxxxx 

populated po pu late d 
YX 

*XXXYY 

x xxx x xxx 
v 

Y '  D C" Y 

(a) unmodified 

Y T  C-l Y 

(b) modified 

Figure 12. Matrix product giving added mass matrix (using 5 segments with 3 singularities per segment) 
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If there are n segments and r sources per segment the main term in the number of multiplications 
required to form MA if n >> 1, r >> 1 is approximately n3r3/3 with C unmodified and n2r2 with C 
modified. This means that, for instance, with 12 segments and 6 sources/segment used for the barge 
analysis (Figure 4) approximately 7500 or 190,000 flops are required to form MA depending on 
whether C is modified or not. This compares with about 2,000,000 flops to obtain the equivalent 
added mass matrix using the finite element idealization given in Figure 4 taking account of sparsity 
in the formulation. (With tridiagonal blocks in C retained the computing requirement is 
approximately 32,000 flops). 

EIGENSOLUTION OF BEAM EQUATIONS 

In the solution of equations in which the hull is modelled as a beam, the order of the eigensolution 
problem to be solved will only be twice the number of longitudinal strips adopted in the 
idealization. It is therefore possible to consider transformation methods, the simplest being a 
generalized Jacobi method which obtains the eigenvalues in a single iterative p r o c e s ~ . ~ , ~ ~  Because 
body movements of the ship are unrestrained, the structural stiffness matrix is singular. If buoyancy 
effects are included then additional stiffness terms are present which render the stiffness matrix non- 
singular, and equation (3) can be transformed to the symmetric standard eigenvalue problem 

where L is the Choleski factor of K and y = LTx. The eigenvalues of L- 'ML-T can then be found, 
for instance, by Householder tridiagonalization and the method of bisection. However, the 
buoyancy forces only arise when vertical vibrations of the ship are being investigated. When lateral 
or torsional vibrations of the ship take place the stiffness matrix will be singular unless small 
artificial buoyancy terms are added. One method of reducing the equations to standard form when 
K is singular' is to add a small component of the mass matrix to the stiffness matrix, thus 

(K + aM)x = (w2 + a)Mx. (33) 
With a positive, the modified stiffness matrix may now be factorized. If K+aM=]ZET, the 
eigenvalues of ]Z- are related to the frequencies through 

I = l / ( d  + a) (34) 
This modification destroys the narrow bandwidth of the matrix to be factorized and so increases 
significantly the computing requirement. 

EQUATIONS WITH IMPROVED STRUCTURAL MODELLING 

Improved structural modelling can be obtained by replacing the beam formulation by either a two- 
dimensionalz7 or three-dimensional finite element formulation. If this is done it is still possible to 
retain the same fluid modelling provided that distortion of cross-sections of the ship are neglected 
and the added mass for each cross-section is lumped at one point on the plane of symmetry. In this 
case the added mass only couples one variable of each cross-section. If the variables in the finite 
element formulation are ordered in sequence from bow to stern, as they would be in a frontal 
ordering scheme for efficient factorization of the structural stiffness matrix, then the mass matrix 
will take the form shown in Figure 13. 

Because the equations are of higher order than when using a beam idealization it is essential that 
advantage is taken of sparsity structures in the equations and hence a form of simultaneous or 
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mass 

1 
Fluid added mass 

Figure 13. Sparsity structure of mass matrix for finite element structural idealization and simple fluid coupling 

subspace iteration, the Lanczos method or the Sturm sequence method is likely to be used. In the 
case where K is non-singular and can be factorized application of standard simultaneous or 
subspace iteration or the Lanczos method to the unshifted equations avoids the need to factorize a 
matrix of the same structure as the mass matrix. However, in other cases such as the Sturm 
sequence method, the spectral Lanczos method2* and some forms of accelerated simultaneous and 
subspace iteration  method^,^^,^^ the matrix to be factorized will have the same sparsity structure as 
M. If the sparsity structure shown in Figure 13 is retained, fill-in will arise in each of the long rows of 

containing fluid coupling terms. Alternatively it is possible to rearrange the node ordering so that 
all the variables involving fluid coupling are ordered last. However whether this is done by a 
suitably modified nested dissection or frontal method it is likely to give a significantly less efficient 
solution than for the case where added mass is not present. 

EQUATIONS WHICH ALLOW FOR FULL STRUCTURAL DISTORTION 

If it is to be assumed that cross-sections distort, then the control point accelerations need to be 
defined in terms of the accelerations of the local structural nodes. This means that Y will tend to 
have at least as many columns as rows so that the added mass will couple displacements associated 
with structural nodes all round the surface of the hull. The mass matrix therefore becomes much 
less sparse than it is in Figure 13 and avoidance of factorizing the shifted matrix becomes even more 
rewarding. In cases where factorization of the shifted matrix is to be adopted, good accuracy should 
be obtained if the more accurate mass terms involving individual control point accelerations are 
used for coupling adjacent panels, reverting to the simple mass terms for coupling segments which 
are not adjacent to each other. This means that, if a frontal ordering scheme is used for the 
variables. most of the rows of the matrix to be factored will still retain a band structure. 
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